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Abstract

Common to all current theories of auditory comprehension is the belief that segmentation of the
input into word forms is a prerequisite for understanding speech. We present a computational
model that does not seek to learn word forms, but instead decodes the experiences communicated
(represented in the model by lexemes) directly from the n-phones in the input. At the heart of this
model is a Rescorla-Wagner network, trained not on isolated words, but on full utterances. This
Rescorla-Wagner network constitutes an atemporal long-term memory system. A fixed-width short
term memory buffer projects a constantly updated moving window over the incoming speech onto
the network’s input layer. In response, the memory generates activation functions for the lexemes
over time. Lexemes encoded into the speech signal are decoded by monitoring for temporally ex-
tended high activation. Unintended lexemic competitors give rise to little or no interference. We
show that this new discriminative perspective on auditory comprehension is consistent with young
infants’ sensitivity to the statistical structure of the input. Simulation studies, both with artificial
language and with English child directed speech, provide a computational proof of concept and
demonstrate the importance of utterance-wide co-learning.

1 Introduction

The technology with which English and related languages encode speech in the form of structured
patterns of ink has had a pervasive influence on the conceptualization of auditory comprehension.
When rendering an utterance in written form in alphabetic writing systems, the speech signal has
to undergo two processes of discretization: segmentation into a sequence of words, to be divided by
spaces, and segmentation of these words into a sequence of letters. For auditory comprehension, it is
likewise assumed that listeners have to segment the speech stream into phonemes, and segment the
stream of phonemes into words. For example, the ShortList-B model (Norris and McQueen, 2008)
characterizes lexical access in auditory comprehension as targeting a path in a word form lattice in
which the word forms, represented by strings of phonemes, are properly lined up but without the
spaces familiar from writing.

The absence of delimiters in the speech signal raises the question of how children learn where
words begin and end, and how listeners partition of the speech signal into the correct sequence
of word forms. For example, in Saffran et al. (1996) and many subsequent studies, children learn
to segment the speech stream into words with the help of low-probability phonotactic transitions.



Based on infants’ looking behavior when presented with sequences of simple syllables, they concluded
that with only 2 minutes of exposure, 8-month old infants segment the speech stream into words
using only the statistical relationships between neighboring phonemes. According to Norris and
McQueen, the correct segmentation into words is obtained by making optimal rational decisions on
the basis of Bayesian probabilities that are continuously updated as the speech signal unfolds over
time.

The present study presents a completely different computational perspective on auditory com-
prehension. We reject the structuralist two-tiered perspective on language that is axiomatic for
models such as Shortlist-B. According to Martinet (1965), a core design principle of language is its
“double articulation”. The structuralists and their descendents argue that on a first tier, sounds
group together to form words, independently of meaning, and that at a second tier, words — the
basic meaning bearing units — group together to form sentences. However, it is well known that
this division of labor falls apart on closer inspection. The sign is not arbitrary (Bolinger, 1949),
as becomes clear immediately to any student of onomatopea, sound symbolism, ideophones, and
phonaesthemes. Moreover, phonaesthemes (e.g., gl in words such as glow, glimmer, glitter, glisten,
and gleam, which all relate to light and its perception) show priming effects similar to those for
regular morphemes (Bergen, 2004; Pastizzo and Feldman, 2009). Instead of marginalizing these
phenomena, we take them as evidence against a two-tiered model of language.

We are therefore investigating what can be achieved with an approach in which the relation
between form and meaning is the outcome of discriminative learning within a system of forms and
meanings. This contrasts with traditional approaches in which this relationship is indirect, with
mediating abstract representations such as phonemes and word forms. Baayen et al. (2011) showed
for reading that a two-layer Rescorla-Wagner network correctly predicts a wide range of effects
observed in experimental studies of reading. In the present study, we extend their approach to
lexical access in auditory comprehension.

The algorithmic core of our model is a simple network architecture with two layers of localist
representations. The input layer has units for n-phones. Although widely used, the problematic
status of the phoneme as an abstract unit is well known (see, e.g., Port and Leary, 2005), and
is nothing more than a back-projection of the letters familiar from western writing systems onto
the speech signal. In order to do better justice to the pervasive consequences of co-articulation in
the speech signal (see also Browman and Goldstein, 1992; Wickelgren, 1969), our input units span
multiple phonemes. Possible choices are demi-syllables, diphones, or triphones. In what follows, we
make use of triphones.

The output layer contains units that we refer to as lexemes. In spite of the pervasiveness of
structural metaphors that see language as a conveyor belt transporting boxes with meanings from
speaker to listener (Reddy, 1979), there are many good reasons to believe that meanings do not
reside in the words or sentences (Ramscar et al., 2010; Ramscar and Port, 2015). Instead, speech
enables senders and receivers to discriminate experiences and goals on the basis of a common code.
For example, in a world with just two experiences (being hungry; being satiated) and no noise, a
code containing just two discrete signals, 0 and 1, would be sufficient (Ramscar and Baayen, 2013).
In reality, the discreteness of elements in a system of lexical items in a code varies. However, what is
important to note is that in a discriminative learning model, suppletive forms such as mice/mouse
serve to accelerate the rate at which a speakers’ representation of a specific form/meaning contrast
becomes discriminated from form classes that express similar contrasts, such as rat/rats (Ramscar
et al., 2013b). That is, experience will increasingly cause all form meaning and contrasts to become
increasingly discrete within a system (Ramscar et al., 2013c), while the degree to which any given
form or meaning contrast is discretized at any given point in time will depend on the status of the
contrast within the overall system, and a speaker’s experience of that system.



Lexemes thus serve to discretize, for the purposes of modeling, the more or less discrete symbols
that conventionalize many common distinctions in the linguistic codes that have evolved amongst
speaker communities. Lexemes are not form units, nor are they semantic units, but rather they
represent the points of contrast that both form and meaning serve to mediate in lexical systems
(see also Aronoff, 1994). In the two lexeme system we described above, a listener identifying the
speech as “1” simultaneously resolves her uncertainty about the form and the meaning of a speaker’s
message. Accordingly, we do not assume that learners are faced with the task of associating words
with concepts, but rather, we see language learning as occurring in a context in which learners
simultaneously master both the relevant distinctions in their environments along with the lexical
distinctions with which they correlate. To reflect this, in the model we present below, the weights
on the n-phone units feeding into a lexeme are subject to continuous change. We assume that this
holds just as well for the experiences that are associated with any given lexeme (Ramscar et al.,
2013a,c), even though in our simulations we do not address this aspect of the dynamics of learning.
In other words, the ‘scope’ of a system of lexemes — and the lexemes within it — changes constantly
with experience, both with respect to the objects and events in the world, as with respect to the
phonetic cues, which are constantly being updated while speaking and listening.

In the network, each n-phone is connected to every lexeme. Connection strengths (weights)
are estimated with the learning equations of Wagner and Rescorla (1972), or with the equilibrium
equations for the Rescorla-Wagner equations of Danks (2003). Central to the learning of the weights
is the concept of a learning event, an event in which a set of n-phones in the auditory signal co-occur
with a set of lexemes. The input n-phones (the cues) predict the lexemes (the outcomes). Depending
on whether these predictions are correct, the weights from the n-phone cues to the lexeme outcomes
are adjusted. Thus, the computational engine of our approach is driven by prediction error. The
activation of a lexeme upon presentation of a signal with a set of n-phone cues is obtained by
summation of the weights on the connections from the n-phone cues in this set to that lexeme.

Fundamental to our approach is the argument that it is counterproductive to seek to segment the
speech signal into a hierarchy of increasingly smaller bits of signal. The deconstruction of the signal
into hierarchies of form units is fundamentally at odds with the central insights of information theory
(Shannon, 1948, 1956). When a video camera records a boy and a girl walking, and communicates
the recording to a display screen through an electrical wire, it is not the case that the electrical
signal in the wire first decompositionally transmits the boy and then the girl. The electrical signal
encodes, to the outside observer, encrypts, the visual scene using an error-corrected optimized code
that transmitter and receiver share, and which allows the display screen to discriminate the steps
that result in the reproduction of the recording. It is this code, the set of algorithms that make
it possible for speakers to use linguistic signals to discriminate the various experiences they wish
to communicate about that we believe is central to a proper understanding language and language
processing.

With its rejection of any segmentation operations on the signal, our approach distinguishes itself
from other computational models of lexical access in auditory comprehension. For instance, both
the TRACE model (McClelland and Elman, 1986), and Shortlist-B are supplied with a lexicon with
pre-segmented word forms and their frequencies. Both models are designed to recover word forms
and their order from a stream of phonemes obtained by concatenation of word forms. Neither model
offers insights as to how these word forms are learned.

In our model, word forms are never learned. Instead, learners acquire and learn to use a lexical
system. As we shall see, not only is it not necessary to learn words forms, it is even counterproductive
to do so. Much of the “heavy lifting” that can make language acquisition seems so puzzling when
considered as a word-at-a-time process is actually a straightforward product of this system.

Of course, training in literacy adds further layers of complexity, with knowledge of words’ or-



thographic forms generating expectations about corresponding phonological forms. These added
complexities are beyond the current scope of our model, which addresses the learning of auditory
comprehension before the onset of literacy.

Our rejection of word form segmentation as part of auditory comprehension presents a unique
perspective on the results obtained by Saffran et al. (1996) and the claim that young infants are us-
ing transition probabilities between phonemes (or other sound units) to segment the speech stream
into words. Like Saffran et al., we agree that their results demonstrate impressive learning ca-
pabilities of young infants, and suggest that experience-dependent (i.e., learning) processes have
been underappreciated in many theories of language acquisition. However, we argue that taking
a “discriminative” stance — rather than a “decompositional” stance as is commonly assumed by
most research — may offer a better characterization of the language acquisition problem. In what
follows, we discuss the phenomenon of low-probability phonotactic transitions (n-phone troughs),
and how the evidence from infant looking behavior that appears to support segmentation can be
understood from the perspective of discrimination learning. We then illustrate, using the English
child-directed speech in the childes database (MacWhinney, 2000), how comprehension can proceed
perfectly well without segmentation.

2 Segmentation and discrimination

Within-word phoneme transition probabilities tend to be higher than between-word phoneme tran-
sition probabilities. Low transitional probabilities have been put forward, together with prosodic
and co-articulatory information, as cues for segmenting the speechs stream into words (Christiansen
et al., 1998; Johnson and Jusczyk, 2001; Thiessen and Saffran, 2003; Saffran et al., 1996), and for
segmenting words into their constituent morphemes (Seidenberg, 1987; Hay, 2002, 2003).

From a discriminative perspective, low-transitional probabilities are not ‘separators’, but ‘binders’:
They are excellent cues for discriminating between lexemes. Consider the word sequence klejpot,
clay pot , i.e., a pot made of clay. Of the triphones for this word pair, kle, lej, ejp, jpo, pot, the
first two are unique to clay, the last is unique to pot, and the third and fourth are unique to the
phrase. Since clay and pot are much more frequent than clay pot, the cues kle, lej will develop strong
weights for clay and weak or even negative weights to clay pot. Similarly, the cue pot will predict
pot, but will provide only weak evidence for clay pot. By contrast, the low-frequency cues ejp, jpo
will be learned to support clay pot. They constitute the only evidence in the signal that supports
the specific meaning ‘pot made of clay’.

Decompositional theories first segment klejpot into klej and pot. At this point, these theories
have to deal with the problem that the meaning of clay pot is not a-priori predictable from the
meanings of its parts — a clay pot could also mean a pot for storing clay. As a consequence,
decompositional theories are forced to view clay and pot as pointers in a hash table to ‘a pot
made of clay’. By first taking the signal apart and then putting it together again, processing
becomes much more complex than it need be: the boundary n-phones ejp, jpo provide exactly
the critical information for targeting the appropriate interpretation. Since many words have highly
context-dependent meanings (compare eat your porridge with eat your hat), segmentation into words
systematically ignores valuable information in the signal, and gives rise to exacerbated problems of
disambiguation at ‘post-lexical’ stages of processing.

In what follows, we first present a series of simulation studies illustrating why segmentation is
not necessary and non-optimal. We also clarify why it is impossible to bootstrap word boundaries
from transition troughs. We then explain, using discriminative learning, why infants respond to
transitional troughs.



2.1 The non-optimality of segmentation

To illustrate the disadvantages of segmentation, we consider a simple artificial language. Words
in this language consist of one or two syllables. Each syllable has a CCVC structure. The first
consonant was selected randomly from the set {p, t, k, b, d, g}, the second consonant was selected from
the set of fricatives {f,s,z,v, 2z, G}. The vowel was one of the 5 cardinal vowels {a,e,,0,u}, and
the final consonant was selected randomly from the set {p,t,k,b,d, g, f,s,x,v,z,G,r,l,h}. A total
of 100 monosyllabic words was generated, and assigned frequencies sampled from a lognormal(4,2)
distribution. Next, a total of 900 two-syllable words was constructed by concatenation of two
syllables sampled from the monosyllabic words, with a probability proportional to their frequency.
The sampling frequencies of these 900 two-syllable words were combined with frequencies sampled
from a lognormal(4,2) distribution. This resulted in a lexicon with 100 monosyllabic and 900
bisyllabic words. Word frequencies and syllable family sizes approximately followed Zipf’s rank-
frequency power law.

Forms Lexemes Parse

pfehdvazd GatpsugtGap 100, 837, 924 pfeh+dvazdGat+psugtGap
tGupgvalgsukdvazkzuptsok 340, 745, 493 tGupgval+gsukdvaz+kzuptsok
dvoskzuppzehtfiGbxuxksub 773, 982, 533  dvoskzup-+pzehtfiG+bxuxksub
pvopdsobgsukdsazpzizksub 892, 189, 898 pvopdsob+gsukdsaz+pzizksub
dviGdvazpzehtfiGbfahpvop 998, 982, 801 dviGdvaz-+pzehtfiG+bfahpvop
pzizgvaldviGksubbsusdzel 694, 677, 312 pzizgval4+dviGksub+bsusdzel

Table 1: Phrase forms, lexemes, and segmentation for simulation 1.

A total of 500 three-word phrases was generated by randomly selecting three words from the
lexicon, in proportion to their frequency. Table 1 lists examples of the phrases, their constituent
lexemes (indexed by integers), and the segmentation of the phrases into word forms. Of the 88
constituents in the complex words, 18 are bound stems that occur in at least one other word
(compare English mit in transmit, commit, emit, submit) and 7 are cranberry morphs that are
attested in only a single complex word (compare cran in English cranberry). The phrases were
assigned a uniform frequency distribution. The task for a computational model is to decode the
lexemes from the signal, i.e., from the unsegment phrases, without any further information such as
a lexicon of word forms.

First consider what might be done using a segmentation-driven approach. For this particular
simulated language, phonotactic constraints on words provide very strong cues for syllable bound-
aries: A boundary follows the initial C in any CCC sequence. However, syllables have to be grouped
into words. The problem that has to be addressed is that many of the phrases can be segmented in
multiple ways (median: 3). For instance, the third phrase in Table 1 has five different segmentations:

dvos kzuppzeh tfiG bruzksub
dvos kzup pzehtfiG bruz ksub
dvos kzup pzehtfiG bruzksub
dvoskzup pzehtfiG bruzksub

dvoskzup pzehtfiG bruz ksub

As a first step, one could select that parse for which the product of the sample probabilities of
its constituent is maximal. The resulting proportion of correctly selected segmentations is 0.322.
Accuracy can be improved to 0.978 by calculating the probabilities of word forms on the basis
of their occurrences across all possible segmentations, and then selecting that parse for which the
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Figure 1: Accuracy of detection of word boundaries as a function of frequency threshold.

product of these constituent probabilities is greatest. (The resulting accuracy is identical to the
accuracy obtained when the population probabilities of the constituents in the lexicon are used.)

Thus, given a simulated language with highly restricted phonotactics, and a correct guess about
the syllable structure, probabilistic reasoning makes it possible to get the word forms right almost
all of the time. Given a one-to-one mapping of word forms to lexemes, this high accuracy extends
to the identification of the lexemes.

What can be accomplished by capitalizing low transitional diphone probabilities as segmenta-
tion cues? The crucial question here is what low is. Figure 1 illustrates that as the threshold for
a ‘low’ frequency diphone is increased, the number of correctly detected boundaries increases (left
panel) to its maximum (2), as expected. At the same time (center panel), the number of spurious
boundaries increases as well, and more rapidly to a higher number. The proportion of correctly
identified boundaries is highest for thresholds around 60 occurrences, and then deteriorates. The
highest proportion of correct syllable boundaries is 0.25. Unfortunately, there is not a single in-
stance across the 500 phrases for which both boundaries are identified correctly. The problem is
that languages typically come with many low-frequency segment transitions that are not boundary
transitions. For any given frequency threshold, boundary transitions with a frequency exceeding
the threshold will not be available for segmentation, resulting in actual word boundaries being
missed. Conversely, non-boundary transitions below the threshold will give rise to spurious word
boundaries. Bootstrapping from phonotactics simply does not work.

Very different results are obtained with discriminative learning. Using the NDL package (Shaoul
et al., 2013) in R version 3.0.2 (R Core Team, 2014), a Rescorla-Wagner network, with weights
estimated by the equilibrium equations, was trained on the 500 phrases. This network predicts the
highest activations for each of the three words across all 500 phrases. Given the principles of error-
driven learning, principles which have been shown to predict not only animal learning (Rescorla,
1988) but also human learning (Ramscar and Yarlett, 2007; Ramscar et al., 2010, 2011, 2013a,b,
2014), subword cues can discriminate perfectly between the lexemes that are encoded in the signal,
and those that are not.

Let’s now consider a simulated language with more variable phonotactics. Table 2 provides
examples of phrases generated using a lexicon in which simple words can have not only CCVC
structure, but also CVC, CVCV, VCVC, or VCV structures. Again, a Rescorla-Wagner network
assigned the highest activations to the correct words across all 500 phrases.



Forms Lexemes Parse
fubaerouboggGoGvaha 176, 175, 37 fubaero+uboggGoG+vaha
fubagGoradaotuadaGebe 505, 922, 665 fubagGor+adaotu+adaGebe
isorkoxoosogGoGodas 74, 827,891  isor+koxooso+gGoGodas
kxoGgokurivukiisahkiG 785, 754, 825 kxoGgok+urivuki+isahkiG
gGokaxaGgGoksufi 77,933, 83 gGok+axaGgGok+sufi
ivefubavahasufi 187, 37, 83 ivefuba+vaha+sufi

Table 2: Phrase forms, lexemes, and segmentations for simulation 2.

Does discriminative learning scale up? Using the same varied phonotactics, we increased the
number of simple words to 2700, the total number of words to 30,000, and the number of phrases
to 10,000. For 94.5% of the phrases, the model correctly predicts the highest activations for the
lexemes encoded in the signal, and for 99.4% of the phrases, the three correct lexemes are among
the top four most highly activated lexemes.

By contrast, the percentage of correctly identified boundaries on the basis of low-probability
transitions, for the optimal threshold, is a mere 0.4%. As before, none of the phrases is correctly
segmented. We anticipate that more sophisticated segmentation induction techniques such as adap-
tor grammars (see, e.g., Synnaeve et al., 2014) will yield much better performance.

Adaptor grammars make assumptions about the grammar generating the phrases. We therefore
also considered a simulated data set where all information useful to adaptor grammars is removed.
For this final set of phrases, words have no phonotactic structure whatsoever. Instead of assigning
a lognormal distribution to word frequencies, word frequencies follow a uniform distribution. Fur-
thermore, a random half of the phrases have four words instead of three, obtained by splitting one
two-syllable word into two one-syllable words. Under the assumption that an adaptor grammar gets
all the syllable boundaries right, 92.2% of the segmentations can be reconstructed. The accuracy
of our Rescorla-Wagner network is at 100%.

This final simulation illustrates that phonotactic restrictions are not necessary for making sense
of the signal. Phonotactic restrictions arise due to constraints on the coordination of our articulators
in speech production. Similarly, a Zipfian power law is not necessary for discriminative learning
to be effective. Word frequency distributions follow, albeit typically only approximately (see, e.g.,
Baayen, 2001), a power law because the events, states, objects and properties in the world tend
to follow power laws (see, e.g. Good, 1953; MacArthur, 1957). Since discriminative learning as
formalized by Rescorla and Wagner benefits from diversity in the signal, the comprehension-external
forces shaping and condensing the lexicon actually render discrimination in comprehension more
difficult: Words become more similar than they would have been otherwise, and phrases become
more ambiguous.

2.2 Low-probability phonotactics and infant looking behavior

We have seen that Rescorla-Wagner networks are able to decode the lexemes from the signal with
very high accuracy, whereas theories assuming that segmentation into words is the gateway to un-
derstanding perform less well. Bootstrapping word forms from troughs in transitional probabilities
was shown to be especially problematic. This raises the question of why young infants are pay-
ing attention to low-probability phonotactic transitions (Saffran et al., 1996). The answer, from a
discriminative perspective, is straightforward: The transitions with lower probability are predicted
less well, hence greater updates of the weights are required. In other words, the infants are simply
more surprised and undergo a stronger learning experience.
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Figure 2: Surprise, measured as change in weight (x100) for a Rescorla-Wagner network (A =
1,a =0.1,8 =0.1) with the current CV syllable as cue and the next CV as outcome, for three CV
syllables with transitional probabilities of 1/3, 2/3, and 1, across 440 learning events. Time on the
horizontal axis is in learning event units.

To clarify this point, we constructed simulated data that approximates the experimental design
of Saffran et al. (1996). A total of 440 CV syllable tokens (representing 15 syllable types) was
presented one after the other to a Rescorla-Wagner network (ba sa hi bo si ho bi se he bu ...).
Some syllables were always followed by exactly the same next syllable (e.g., ba was always followed
by sa). Some syllables were followed by one syllable in two thirds of the cases, and by another in
one third of the cases (e.g., ha was followed by bi two thirds of the time, and by bo one third of the
time). Finally, some syllables were followed by any of three syllables with equal probability (e.g.,
hi by be, bo, bu). The task of the network was to predict the next syllable (the outcome) given the
current syllable (the cue).

The rationale for this set-up of the simulation is that infants participating in experiments such
as described by Saffran et al. (1996) are listening to a sequence of meaningless syllables. We assume
that the minima in spectral energy in the speech signal demarcate boundaries on the individual
speech events. In other words, we assume that the infants are sensitive to syllable identity. In
the absence of any meaningful communication taking place in the course of the experiment, the
implicit learning system predicts upcoming syllables. At each subsequent syllable, we adjust weights
according to the Rescorla-Wagner equations.

Figure 2 summarizes the changes in the weights. These reflect the model’s surprise about its
prediction error, as it develops over the course of the experiment. For the syllable transitions with
probability 1, the weight adjustments decrease most quickly. For the most uncertain transitions,
the adjustments in the weights decrease slowly. The transitions with medium uncertainty pattern



t  window cue; Ccuep Ccueg Ccueqs Ccues Cueg Ccuey cueg

1 pv #pv  DVH

2 pvo #pv  pvo  vo#

3 pvop #pv pvo VvOop Op#

4 pvopd #pv pvo vop opd pd#

5 pvopds #pv pvo vop opd pds ds#

6 pvopdso #pv pvo vop opd pds dso so#

7 pvopdsob #Hpv pvo vop opd pds dso sob ob#

8 vopdsobg #vo vop opd pds dso sob obg bg#

9 opdsobgs #op opd pds dso sob obg bgs gs#
10 pdsobgsu #pd pds dso sob obg bgs gsu su#
11 dsobgsuk #ds dso sob obg bgs gsu suk uk#
12 sobgsukd #so sob obg bgs gsu suk ukd kd#

Table 3: Short-term moving window for the initial part of sentence 4 of simulation 1. The #
represents the absence of signal, i.e., silence.

in between. Since the surprise at having made a wrong prediction is greatest for the low-probability
transitions, it is no wonder that infants look at these more. There is strong evidence that the type
of implicit learning involved here is mediated by dopaminergic cells in specific areas of the human
brain (Schultz, 1998). How exactly changes in the firing rate of these dopaminergic cells give rise to
infants’ head-turning behavior we do not know. But at the functional level, the Rescorla-Wagner
equations offer a simple and straightforward explanation for the observed head-turning behavior.

3 The time-course of signal-lexeme decoding

Thus far, we have evaluated the performance of the Rescorla-Wagner networks by inspection of
the activations of the lexemes in simple phrases. Across simulations, the networks successfully
discriminated between the pertinent lexemes and the other lexemes by assigning the former the
highest activations. In this section, we consider in more detail the timecourse of lexeme activation.

For predicting the timecourse of lexeme activation, we take a moving window of the incoming
speech signal and use it as the input to a pre-trained Rescorla-Wagner network. The network
serves as a memory that is itself a-temporal, but that, due to the sequential nature of the cues
(n-phones), implicitly captures rich temporal information. The moving window, illustrated for the
fourth simulated sentence in Table 1, represents the part of the incoming signal that can be held in
a short-term memory buffer. As with other domains of temporal cognition, whether it be navigation
through space, listening to music, or remembering a story or a film, complete paths of non-trivial
length are impossible to hold in mind at once. Typically, we have to replay these paths step by
step, where any given small segment that we can hold in mind at time ¢ in the sequence becomes
the stepping stone to the next small segment at time ¢ + 1.

The moving window defines the set of n-phone cues that are available at a given point in time,
henceforth the active cues. The active cues are connected, with individual weights, to all lexeme
outcomes. The activation of a given lexeme is defined by the sum of the weights on the connections
from the active cues to that lexeme. As the length of the window is fixed and independent of the
lengths of the words in the signal, lexemes will tend to be activated when the window moves into
the area where their word form is located, and they will tend to de-activate when the window passes
out of their word form area. Figure 3 illustrates this pattern for the fourth sentence in Table 1.
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Figure 3: Activation as a function of time for the fourth simulated phrase in Table 1. Darker shades
of gray indicate greater activation. Activations exceeding a threshold set at 0.5 are highlighted
in red. Polygons highlight time intervals where the signal provides continuous support for words’
lexemes.
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Time is displayed on the horizontal axis, with segments as units of time. Along the vertical
axis, a subset of the lexemes is shown. This subset contains any lexeme that, at any point in time,
belongs to the six highest activated outcomes at that point in time. The activations of these lexemes
are represented by discs coded with grayscales, with darker shades of gray representing higher
activations. For easy of visual inspection, activations exceeding a threshold of 0.5 are presented in
red. Horizontal gray lines highlight the lexemes encoded in the signal. The polygons highlight the
intervals of time at which the word forms in the signal activate their lexemes above the threshold.

The timecourse of lexeme activation illustrated in Figure 3 is one in which the lexemes of the
three words are activated in order. Word polygons have a rightwards orientation, consistent with
the accumulation of evidence as the sliding window covers more of the word form. We note here
that word forms (as displayed above the polygons) do not have any theoretical status in our model.
They are shown only to facilitate interpretation.

The details of the timecourse of activation as predicted by our model can be quite subtle.
Consider, for instance, the polygon for the first word, pvopdsob. The first point in time where this
word is highly activated is when the sliding window has moved over to the first segment of the
second word, the g of gsukdsaz. This is because the boundary triphones, obg and bgs, are the most
powerful discriminators for lexeme 892. What we see here is a phenomenon that we call co-learning.
Lexemes are not learned in isolation, but in context. Lexemes are thus part of a system, a system
that is much richer and informative than expected given segmentation-driven theories. Co-learning
on the basis of co-occurrences of subword units like n-phones across different word forms lies at the
heart of the parsimoneous explanation of frequency effects for word n-grams given by Baayen et al.
(2013).

The effects of co-learning can be much more salient, as illustrated in Figure 4 for the first phrase
in Table 1. Here, we see that strong support for the first two words arises only when the moving
window has reached the third word. An important aspect of discriminative decoding of the signal,
illustrated in both Figure 4 and Figure 3, is that strong activations for lexeme competitors are
ephemeral. Competitor activations above threshold are typically restricted to one time unit. The
only exception in Figure 4 is for lexeme 207, which in this simulated language is the high-frequency
word tGaptGuz, the first syllable of which is identical to the second syllable of the third word
psugtGap. But even for this strong competitor, the temporal extension of strong activation is more
restricted than that of the lexemes that are actually encoded in the signal.

Results thus far are based on small samples of simple artificial languages. Doesn’t this come
with the risk of overfitting the data? We don’t think so. We have trained Rescorla-Wagner networks
on corpora of up to 9 billion words, and obtained excellent predictions for visual lexical decision
latencies. In what follows, we focus on a much smaller data set, consisting of the child-directed
speech in the English section of the CHILDES database (MacWhinney, 2000), comprising 6,653,023
word tokens representing 34,082 word types, instantiated across 1,674,811 utterances. We ordered
utterances chronologically by the age of the children addressed. A Rescorla-Wagner memory was
constructed by applying the Rescorla-Wagner equations, rather than the Danks equilibria equations,
with as learning events the 1,674,811 utterances, using a development version of the NDL package
(Shaoul et al., 2014). Each utterance was converted into a segment stream of IPA symbols, using
the CMU dictionary (Weide, 1998). For a given learning event, the cues were the set of unique
triphones in the segment stream. The total number of unique triphone cues across all utterances
was 23,229. The words were used as outcomes. For future work, we plan to pre-process the words
so that inflectional variants such as play, plays and playing will be represented by a common lexeme
for the experience of playing, as well as by additional grammatical lexemes for number, tense, and
aspect.

Figure 5 presents the activation dynamics when a seven segment wide sliding window is moved
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Figure 4: Activation as a function of time for the first phrase in Table 1. Darker shades of gray
indicate greater activation. Activations exceeding a threshold set at 0.5 are highlighted in red.
Polygons highlight time intervals where the signal provides continuous support for words’ lexemes.
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over the sentence can I please play with the little piggy on the chair, a made-up sentence that does
not occur in the corpus and serves as illustration of the productivity of a Rescorla-Wagner memory.
As for the preceding figures, the left axis lists any lexeme that at a given point in time belonged to
the set of 6 words with the highest activations. Target lexemes are highlighted.

Several aspects of this example are noteworthy. First, lexemes become highly activated in
roughly the same order as the words are arranged in the utterance. The only lexeme that fails to be
sufficiently activated to appear in the signal-to-lexeme decoding time map is play. However, played
and especially playing are highly activated. We anticipate that in a future implementation of the
model in which inflected words are linked to both content and grammatical lexemes, this problem
will not arise.

Second, pig and piggy are strongly activated, with strong activation for pig emerging one timestep
earlier than for piggy, and with strong activation continuing one timestep longer for the diminutive.
That a base word and its derivative show co-temporal activation is not surprising, and both can
be argued to contribute to the semantic percept of the diminutive. A more sensitive coding of the
lexemes, with piggy sharing the category-denoting content lexeme pig with its base, but in addition
having a separate lexeme for, e.g., affectiveness, will of course change the activation dynamics of
the two words. A more important shortcoming of our present implementation is that acoustically,
the independent word pig and the base pig in piggy have different acoustic characteristics (Hawkins,
2003; Salverda et al., 2003; Kemps et al., 2005a,b). As a consequence, there is discriminative
information in the speech signal that is lost in our current implementation of cues in the form of
triphones.

Third, 4t is an embedded word in little. Even though of a very high frequency, it is not as
well supported as little, with only two adjacent timesteps with strong activation. All other lexical
competitors, such as eat in the chair (which our text-to-phone system converted to ditfer), have
ephemeral activations.

Fourth, words that appear more than once in an utterance, such as the definite article in the
present example, straightforwardly activate their lexeme at disjunct time intervals. Finally, the
model predicts that lexemes can be strongly co-activated for overlapping time intervals. The present
example illustrates this for can I and for on the chair. Since languages may express abstract features
such as number, person, case, etc. by means of suprasegmentals such as stress, segmental duration,
glottalization, tone, and nasalization (Hyman and Leben, 2000), we know that grammatical lexemes
and content lexemes can be activated simultaneously. (The same point can be made on the basis of
English irregular verbs such as run and ran, where present versus past tense is activated cotemporally
with the lexical meaning.)

It is important, when building a Rescorla-Wagner memory, to use full utterances as training
events, and not isolated words. This point is illustrated by Figure 6, which presents the same sen-
tence played to a network exposed to single-word learning events. Many things now go wrong. The
function words I, the and on have strong activations only at single timesteps, making it impossible
to distinguish them on the basis of temporal span from spurious intruding lexemes such as a, an,
to and it. Furthermore, many other words now receive extensive temporal support, such as night,
think, feeling, helping, wipe and each. By withholding contextual information in the utterance, the
weights from a word’s cues to its lexemes are overfitted, and bereft of the moderating benefits that
accrue thanks to cue competition in contextual learning.
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Figure 5: Activation as a function of time for a Rescorla-Wagner memory trained on full utterances
in CHILDES. Darker shades of gray indicate greater activation. Activations exceeding a threshold
set at 0.2 are highlighted in red.
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4 Discussion

Many researchers, although working within very different theoretical frameworks, agree that pre-
diction plays a central role in language processing (see, e.g., Hawkins and Blakeslee, 2004; Norris
and McQueen, 2008; Frank and Bod, 2011). Central to the present study has been the question
of prediction in lexical access during auditory comprehension. The answer that we have offered
builds on a discriminative theory of language that is incompatible with standard decompositional
and abstractionist theories (see also Baayen and Ramscar, 2015).

Standard approaches to language submit grammar to be a calculus, a formal system comprising
an alphabet of elementary symbols such as stems and morphemes, stored in a mental lexicon, that
is combined with a set of rules defining the well-formed symbol sequences of a language. In the
context of these standard approaches, it makes sense to consider algorithms that segment the signal
into its constituent symbols. Thus, models suchs as Shortlist-B set out to partition the speech
stream into a sequence of word forms that jointly completely cover the speech stream without
overlap. By combining Bayesian updating with a path-based search through a word lattice, input
such as 0O9kastalpgimslarbrr is segmented into the sequence of word forms the catalogue in a library,
succesfully discarding alternative sequences such as the cat a log in a library.

The theory we have outlined in this study explicitly rejects the conceptualization of language as a
formal calculus. Taking inspiration from Shannon’s theory of information, our focus shifts from the
internal constituency of the signal to the code encrypting and decrypting the experiences conveyed
by the signal. We understand the encoding and decoding processes as fundamentally discriminative
in nature, and have found the functional characterization of discriminative learning provided by the
Rescorla-Wagner equations to provide an excellent basis for computational implementation.

We have shown that a Rescorla-Wagner network, exposed to learning events which comprise
all sublexical cues and all lexeme outcomes present in full utterances, can be used as an atemporal
long-term memory system in combination with a short-term memory that projects a moving window
over the incoming speech signal onto the network’s input layer. In response, the memory generates
activation functions for the lexemes over time. Lexemes encoded into the speech signal can be
decoded by monitoring for temporally extended high activation. Unintended lexemic competitors
give rise to little or no interference, as long as the Rescorla-Wagner memory is trained on whole
utterences and not on isolated words. We note here that the architecture of our model is much
simpler than that of the TRACE and Shortlist-B models.

Decompositional theories, founded on the structuralist conception of the dual articulation of lan-
guage, deprive themselves of the rich sublexical co-occurrence structure that is crucial for rapid and
accurate discrimination between encoded and non-encoded lexemes. As a consequence, problems
of discrimination and disambiguation are relegated to processing stages following the segmentation
of the speech stream into word forms, to the sentence level, whereas they could already have been
solved, at least in part, before then. By way of example, consider near homophones (Gahl, 2008)
such as thyme and time. In our approach, these words are associated with different lexemes, and the
n-phones contributed by the other words in the utterances in which these words occur contribute
to discriminating between them. By contrast, the Shortlist-B model segments out the word form
tamm, and defers the disambiguation between the concrete and abstract interpretation to subsequent
processes.

Experiments with young infants have been taken as evidence for segmentation of the speech
stream into words. Saffran et al. (1996) concluded that apparently with only two minutes of expo-
sure, 8-month old infants were able to find the word boundaries in an artificial language. However,
their evidence is entirely consistent with the predictions of a Rescorla-Wagner network predicting
next syllables. Furthermore, as has been pointed out by numerous people including Saffran and col-
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leagues (Johnson and Jusczyk, 2001; Thiessen and Saffran, 2003), bootstrapping word boundaries
from transition probability troughs is computationally infeasible, due to many word boundaries
having high-transition probabilities. By contrast, Rescorla-Wagner networks designed to predict
the lexemes encoded in the signal instead of the boundaries between word forms, do so with a very
high accuracy.

We conclude this study with a comparison of our discriminative learning approach with the
Shortlist-B model of Norris and McQueen (2008). These authors argue that word recognition
closely approximates optimal Bayesian decision making. The problem we see here is that Bayesian
decision making, in the way they restrict it to a static probability space that does not take the
sequence of learning events into account, must fail to properly predict the phenomenon of blocking
(see, e.g. Kamin, 1969; Rescorla and Holland, 1982).

When a dog first trained to expect food when a bell rings, and subsequently trained to expect
food when a bell is rung together with a flashing light, this dog does not expect food when the light is
flashed without ringing the bell. Bayesian decision making that has access only to the accumulated
counts of events fails to predict the dog’s expectations. For instance, consider a training sequence
in which food is presented half of the time (always with a bell ringing), a light is flashed a quarter
of the time together with the bell (all in the second part of the training sequence), and in which
the probability of light given food is 0.5 (of all trials with food, half had a light flashing). Then,
according to Bayes rule,

Pr(light|food) Pr(food) -3

: _ _2'2 _
Pr(food|light) = Pr(Tight) = T =1.

For a model that does not take learning and cue competition over time into account, this is the
only rational prediction, and the prediction of anyone unfamiliar with the empirical findings. Im-
portantly, blocking is not just a curiosity from the animal learning literature: The difficulties of
acquiring a second language in the presence of a first language bear eloquent witness to the pervasive
effects of blocking in language (see Ellis, 2006a,b, for detailed discussion).

The Rescorla-Wagner equations correctly predict blocking. Several proposals are available for
explaining blocking using insights from Bayesian modeling (see Holyoak and Cheng, 2011, for a
review). They all have in common that they take into account that evidence accumulates over a
learning process, and that in this process, cue evidence has to be weighted for the presence of other
cues. Interestingly, as pointed out by Trimmer et al. (2012), a learning rule that is ‘optimal’ in the
Bayesian sense may be favored less by natural selection in biological systems than the Rescorla-
Wagner learning rule, because the latter is more robust to different configurations of parameters.
Whatever the mathematical characterization of the biologically optimal way of dealing with predic-
tion error may ultimately turn out to be, it is clear that learning and cue competition must be part
of any experience-driven model of language processing.

Once this discriminative aspect of learning is taken seriously, questions must be answered about
the appropriate grain size of learning events and the particulars of the cues and outcomes in these
learning events. The grain size of learning events emerged from the present study as much wider
than we had originally anticipated — the model of Baayen et al. (2011) restricted itself to learning
events with only three words. The other side of the same coin is that we have been massively
underestimating the importance of co-learning.
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